

European Southern Observatory

OPTICAL DETECTOR TEAM

VERY LARGE TELESCOPE

NASMYTH ADAPTIVE OPTICS SYSTEM

WFS - CCD detector system : Performance and test report

VLT-TRE-ESO-11650-2592

Issue 1.4

Date 08/11/01

Prepared	Reinhold Dorn, C.Cavadore	04 July 2001
Approved	Norbert Hubin	04 July 2001
Released	Sandro D'odorico	09 July 2001

TABLE OF CONTENTS

- 1. Scope
- 2. Applicable and reference documents
- 2.1 Applicable documents
- 2.2 Reference documents

3. Mechanical interfaces and specifications

- 3.1 Interfaces Specifications: reference plans
- 3.1.1 Adapter structure and DFE Power Supply
- 3.1.2 Adapter structure and Detector Head Electronics
- 3.1.3 Cryostat Temperature controller and AD Main Rack
- 3.1.4 Preamplifiers
- 3.1.5 Chip specifications and alignment

4. Detector performance

- 4.1 Functionalities and image setup
- 4.1.1 Fiera detector head electronics hardware setup
- 4.1.2 Readout functionalities and description of available modes
- 4.1.3 Conversion factors
- 4.1.4 Integration time (or Gap)
- 4.1.5 Analog to digital converters
- 4.1.6 Readout modes and frame rates
- 4.2 Detector performance
- 4.2.1 Noise measurement method
- 4.2.2 Noise results
- 4.2.3 Quantum efficiency
- 4.2.4 Dark current
- 4.2.5 Linearity and full well capacity
- 4.2.6 Undershoot problem, cross-talk and charge transfer efficiency
- 4.2.7 Cosmetic quality of the NAOS CCD
- 4.2.8 Electronic offset
- 4.2.9 Contamination risks and how to keep the system clean

5. Cryogenics

- 5.1. Cooling and temperature parameters
- 5.2 Flexure test
- 5.3 Lenslet holder integration

6. Electrical interfaces

- 6.1. Cryostat temperature controller
- 6.2. FIERA/RTC cable interface

7. Deliverable

- 7.1 Cryogenic system
- 7.1.1 Cryostat
- 7.1.2 LN2 pipes (at Bellevue, date to be redefined)
- 7.1.3 Pumping system
- 7.2 Detector
- 7.2.1 Detector electronics
- 7.2.2 CCD cryostat head with the EEV chip
- 7.2.3 Cables
- 7.3 Documentation
- 7.3.1 FIERA Users' Manual
- 7.3.2 FIERA Maintenance Manual
- 7.3.3 Cryostat Operating and User's Manual

8. Spare system

9. NAOS specific cable documentation

Changes record:

Release	Date	By	Changes made
1.1	19/06/2001	C.Cavadore	In hand, to issue 1.2
1.2	27/06/2001	Ph. Feautrier	Accordingly to Ph. Feautrier e-mail posted to naos-
			ccd list, date 23 Apr 2001
1.3	04/07/2001	C.Cavadore	Final changes
1.4	26/11/2001	C.Cavadore	Clarification of the readout video paths, drawing of
			preamps versus CCD head and electrical interface.

1. Scope

The purpose of this document is to a provide report on the performance of the final CCD detector system for NAOS. This report will be part of the acceptance of the final CCD detector system. The camera acceptance plan document was taken as a basis to ensure all issues are covered.

2. Applicable and reference documents

2.1 Applicable documents

[1] NAOS Contract: Statement of Work VLT-SOW-ESO-11650-0864

- [2] NAOS Contract: Technical Specifications VLT-SPE-ESO-11650-0877
- [3] User's Requirements VLT-SPE-NAO-11650-9100
- [4] NAOS-Low Noise Fast Read-out CCD Camera Interface Control Document VLT-ICD-NAO-11650-13640 Issue 3.0

2.2 Reference documents

- [5] CCD prototype camera Test Report VLT-TRE-NAO-11650-1-160000-0004 Issue 1.3
- [6] CCD Camera flexures Test Report VLT-TRE-NAO-11650-1-160000-0003 Issue 3.0
- [7] Technical operating manual of the NAOS CFC (Visible Wave Front Sensor) VLT-MAN-ESO-11650-1837 Issue 1
- [8] Interface CCD-HEAD drawing VLT-IDW-ESO-11650-1612000-0001 (1), issue 6, 14/3/00, Cochard (Modified by LAOG for interface CCD head acceptance)
- [9] Interface of the CCD head for the visible Wave-front sensor of NAOS, VLT-ICD-ESO-11650-0- 161100-0001, Issue 1, JL Lizon, 6/4/99
- [10] Design Report FIERA Visible Detector System R. Gerdes Draft 0.0 9-March-1999
- [11] NAOS CCD Detector System Detector design and performance report R. Dorn Draft 0.1 10-8-99
- [12] Final CCD Camera Test Report VLT-TRE-NAO-11650-1-160000-0006 Issue 3.0

3. Mechanical interfaces and specifications

3.1. Interfaces specifications: reference plans

The mechanical interfaces between the CCD head and the lenslet holder are described in ref. [8] and [9].

3.1.1. Adapter structure and DFE Power Supply

Dimensions and weight described in ref. [4] Table 3 p9/42

3.1.2. Adapter structure and Detector Head Electronics

Dimensions and weight described in ref. [4] Table 3 p9/42

3.1.3 Cryostat Temperature controller and AD Main Rack

Dimensions and weight described in ref. [4] Table 3 p9/42 and in section 3.2.2 p 9/42

3.1.4 Preamplifiers

The new preamplifier dimensions are half the size of the dimensions described in ref. [4] section 3.2.2. Reinhold Dorn has sent the drawings to the NAOS consortium.

3.1.5 Chip specifications alignment

a) Position of the chip relative to the lenslet holder

For this measurement the head is leveled such that the reference plane defined by the kinetic interface is parallel to the X and Y axis of the measuring machine.

- X 0 is on the reference point
- Y 0 is on the reference point, the groove is on Y 0
- Z 0 is on the reference plane (flat)

	Specification	Measured
Α	30 ± 0.01	30.01
В	40 ± 0.01	39.99
Ζ	20 ± 0.05	20
Tilt around Y		5.7 arc min
Tilt around X		2.29 arc min
Rotation		<10 arc min

The Z positions has been measured at the edge of the sensitive surface and in order to increase the accuracy again at the physical edge of the chip.

b) Position of the chip relative to the interface flange

For this measurement the head is leveled such that the interface flange is parallel to the X and Y axis of the measuring machine.

- X 0 is on the reference point of the interface flange
- Y 0 is on the reference groove of the interface flange
- Z 0 is on the reference plane of the interface flange

The Z	2 positions ha	ıs been	measured	at the	edge	of the	sensitive	surface	and	in orde	r to	increase	the	accura	icy
again	at the physic	al edge	e of the ch	ip.											

	Specification	Measured
Α	12 ± 0.5	12.42
В	0 ± 0.5	0.305
Z (Cold plate / window flange	22 - 0.01	22.02
interface)		
Tilt around Y	22 arc min	5.7 arc min
Tilt around X	22 arc min	6.9 arc min
Rotation		<10 arc min

4. Detector performance

The following section describes the various performances and functionalities of the NAOS CCD detector system.

4.1 Functionalities and image setup

This numbering has historical reasons and was therefore kept for the final system to be consistent with the different phases in the development of the NAOS detector system.

4.1.1 Fiera detector head electronics hardware setup

• Videoboard 0 to 3

Videobrd 0 to 3	Channel 0	Channel 1	Channel 2	Channel 3
Gain0	2.0 e ⁻ /ADU			
Gain1	0.3 e ⁻ /ADU			
Resistors (gain0)	R 43= 270Ω	$R 47 = 270\Omega$	$R 51 = 270\Omega$	R 55= 270Ω
Resistors (gain1)	$R 42 = 68\Omega$	$R 46 = 68\Omega$	$R 50 = 68\Omega$	$R 54 = 68\Omega$
Filter 0	C21= 22pF	C25= 22pF	C29= 22pF	C33= 22pF
	$(\tau = 33 \text{ ns})$			
Filter 1	C22= 220pF	C26= 220pF	C30= 220pF	C34= 220pF
	$(\tau = 500 \text{ns})$	$(\tau = 500 \text{ns})$	$(\tau = 500 \text{ns})$	$(\tau = 500 \text{ns})$ -
Filter 2	C23= 1nF	C27= 1nF	C31=1nF	C35= 1nF
	$(\tau = 1500 \text{ns})$			
Filter 3	C24=C374=1nF	C28 = C375 = 1nF	C32 = C376 = 1nF	C36 = C377 = 1nF
	$(\tau = 3000 \text{ns})$			
Offset setting	0 to 10 Volts			

Table 1 - Fiera detector head electronics hardware setup

- 1 Clock board, default , no modifications, 10 Ω output resister of the reset, 50 Ω for all other phases
- 1 Communication board, default (no modifications)
- 1 Bias board, specific to NAOS bridges installed between output 1-2 and 3-4, to get more current
- Power supplies, default (+15 V; -15 V; +30 V; +24 V; +5 V)
- 1 DSP board (40 MHz), default (no modifications)
- 1 Benner board, **special** and fully populated for AO functionality
- 1 Sparc computer, default (no modifications)
- 4 preamplifiers with gain setting: The preamplifier got special mechanical housing. For each board :

R10, R24, R38, R52 = 300 Ω and R11, R25, R39, R53 = 120 Ω . R12, R13, R26, R27, R40, R41, R54, R55 have been removed.

<u>Warning</u>: Preamp 2 channel 3 (O/P9) and Preamp 1 channel 3 (O/P8) has different constant current sources of 3.6mA, other are 2.4mA. C22, C37, C52 and C67 have been removed (cap filter a the input of the first OPA620).

CCD	Preamp	Preamp	Preamp	Constant	Video	Video	Notes
output	assignment	input	Channel	Current in	Board	Board	
				preamp box	assignment	Channel	
O/P1	0	A1	0	2.4mA J508	0	0	Not used by RTC
O/P2	0	A2	1	2.4mA J508	0	1	
O/P3	0	A3	2	2.4mA J508	0	2	
O/P4	0	A4	3	2.4mA J508	0	3	
O/P5	1	B1	0	2.4mA J508	1	0	
O/P6	1	B2	1	2.4mA J508	1	1	
O/P7	1	B3	2	2.4mA J508	1	2	

O/P8	1	B4	3	3.6mA J510	1	3	Uses U309
O/P9	2	A4	3	3.6mA J510	2	3	Uses U309
O/P10	2	A1	0	2.4mA J508	2	0	
O/P11	2	A2	1	2.4mA J508	2	1	
O/P12	2	A3	2	2.4mA J508	2	2	
OP/13	3	B4	3	2.4mA J508	3	3	
OP/14	3	B1	0	2.4mA J508	3	0	
OP/15	3	B2	1	2.4mA J508	3	1	
OP/16	3	B3	2	2.4mA J508	3	2	Not used by RTC

4.1.2 Readout functionalities and description of available modes

The following tables explains the readout functionalities for the NAOS modes which feature:

- 1. Normal read out full 1x1
- 2. Binning 2x2
- 3. Binning 4x4
- 4. Windowing down to 6x6 pixels

The tables provide the number and location of

- pipeline pixels (visible in image)
- prescan pixels (visible in image)
- image pixels (useful pixel in image)
- skipped pixels (not visible in image)

per port for all readout modes available.

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
1, 2, 3, 9, 10	2	2	20	64	20 x 64	140 x 128

	Pi Pr	pel esc	ine	e pi ni	xel	s s	<u>(</u>	vis	sibl	le i	ni ni	ma ma	ige ge	<u>;)</u>)					
	In	nag	e p	ixe	els	5	(1	use	ful	pi	xe	$\frac{1}{1}$ in	iir	ា naទ	ge)				
	Sk	cipr	ped	l pi	ixel	S	(1	not	t vi	sib	le	in	im	age	30) 2)				
																		_	
4	_																	L	F
63 62					+		-	-	_		-	-		-			-	-	+
61																			
60 59		-	_		+		┢	_			_	_		-		-	-	-	+
58																			t
57				-	_				_					-		_	_	L	_
50 55					+		+	-	-		-	-		\vdash	+	-	\vdash	-	+
54								L			L								
53 52			-	-	-		-	-	-	-	-	-	\vdash	+	-	-	-	╞	+
51																			t
50					-		<u> </u>		-					_				-	_
49					-		+	-	+		-	-		+	-	+	+	-	+
47					Γ														F
46	+				-		\vdash	\vdash			\vdash	\vdash		\vdash	-		\vdash	\vdash	+
44																			t
43				-	_									-	_	_		<u> </u>	-
42					+		+	-	-		-	-		+	+	-	+	-	+
40																			
39 38	_			-	+		-	-	-		-	-	_	-	-	-	-	-	+
37																			
36				-	_								_	-	_	_		<u> </u>	-
35 34					+		+	-	-		-	-		+	+	-	+	-	+
33															1				
32 31	+				-	-	\vdash	-	-		-	-		-	\vdash	-	+	-	+
30																			
29	+				-		\vdash	\vdash			\vdash	\vdash		\vdash			\vdash	L	+
27	+				+		-	-	-		-	-		+	-	-	-	F	\vdash
26		T			T														F
25 24	+				-	-	\vdash	-	-		-	-	\vdash	\vdash	\vdash	\vdash	-	╞	+
23	\pm													L	L				
22	\square	F			F		F	F			F	F					\square	F	F
21	+				-		\vdash	-			-	-		\vdash	-		\vdash	H	+
19																			
18	+				-		\vdash	\vdash			\vdash	\vdash		\vdash			\vdash	L	+
1/	+				-													F	\vdash
15																L			F
14	+	╞			-		\vdash							\vdash				\vdash	+
12																		F	\square
11																			F
10 9	+						\vdash					-			\vdash		\vdash	-	+
8																			
7	+	┢			-	-	\vdash								-			-	+
5	\pm																		
4	-						F	F	\vdash		F	F		\vdash		\vdash	\vdash	L	1
3	_				+		-	-			-	-		-		-	-	-	+
1																			

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
4	2	2	20	48	140	96

Pipeline pixels	(visible in image)
Prescan pixels	(visible in image)
Image pixels	(useful pixel in image)
Skipped pixels	(not visible in image)

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
5	1	2	11	32	11 x 32	77 x 64

Pipeline pixels	(visible in image)
Prescan pixels	(visible in image)
Image pixels	(useful pixel in image)
Skipped pixels	(not visible in image)

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
6	2	2	12	32	12 x 32	84 x 64

Pipeline pixels	(visible in image)
Prescan pixels	(visible in image)
Image pixels	(useful pixel in image)
Skipped pixels	(not visible in image)

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
7	1	2	11	24	11 x 24	77 x 48

Pipeline pixels	(visible in image)
Prescan pixels	(visible in image)
Image pixels	(useful pixel in image)
Skipped pixels	(not visible in image)

Mode	Pipeline pixel	Prescan pixel	Pixel in x	Pixel in y	Image size	Image size
	per port	per port	per port	per port	per port	(14 ports)
8	1	2	7	16	7 x 16	49 x 32

Pipeline pixels	(visible in image)
Prescan pixels	(visible in image)
Image pixels	(useful pixel in image)
Skipped pixels	(not visible in image)

ROAM files

There are 10 ROAM files generated to distinguish between the three different kind of pixels:

- 1. pipeline pixel
- 2. prescan pixel
- 3. image pixel

The modes are in the \$INS_ROOT of the NAOS configuration and named as following:

for mode 1:	mode_1.mdf
for mode 2:	mode_2.mdf
for mode 3:	mode_3.mdf
for mode 4:	mode_4.mdf
for mode 5:	mode_5.mdf
for mode 6:	mode_6.mdf
for mode 7:	mode_7.mdf
for mode 8:	mode_8.mdf
for mode 9:	mode_9.mdf
for mode 10:	mode_10.mdf

4.1.3 Conversion factors

- High gain (H) in the NAOS setup gives a conversion factor of ~0.3 e-/ADU (remotely selectable)
- Low gain (L) in the NAOS setup gives a conversion factor of ~2 e-/ADU (remotely selectable)

The exact values for all modes are given in section 4.2 together with the noise performance of the system.

4.1.4 Integration time (or Gap)

The integration time is programmable independently from the pixel frequency. Adding no gap will allow the maximum frame rate per mode as given in table 2.

4.1.5 Analog to digital converters

- FIERA uses 16 bits per port.
- 14 outputs are used; outputs 1 and 16 are not used for NAOS.

4.1.6 Readout modes and frame rates

Since we agreed to leave the gap as a free parameter the following table summarizes the setup for the readout modes for the NAOS CCD system. The table also states the maximum frame rates and image size.

The "Frame rate final" of this table are estimated value of the frame rate, they have not been measured at Garching.

Measured Frame Rate values are in Ref. [12], measured with the NAOS Real Time Computer during the integration and tests in Bellevue.

The image size of this table contains different type of pixels (see paragraph 4.1.2):

- pipeline pixels
- prescan pixels
- image pixels

Mode	Binning	Window	Gain	Pixel	Sub-	Image size	Frame rate	Frame rate
				Rate	apertures	(x,y)	goal	final
unit	-	-	-	kps	-	pixels	f/s	f/s
1	1x1	no	Н	280	7,14	140 x 128	230	215
2	1x1	no	Н	635	7,14	140 x 128	500	431
3	1x1	no	L	635	7,14	140 x 128	500	431
4	1x1	6x6	Н	280	7,14	140 x 96	290	277
5	2x2	no	Н	50	7,14	77 x 64	120	138
6	2x2	no	Н	280	14	84 x 64	500	653
7	2x2	6x6	Н	50	7	77 x 48	250	184
8	4x4	no	Н	50	7	49 x 32	500	400
9	1x1	no	Н	715	7,14	140 x 128	-	500
10	1x1	no	L	715	7,14	140 x 128	-	500

Table 2 - Readout modes and frame rates

4.2 Detector performance

4.2.1 Noise measurement method

The readout-noise and gain (conversion factor in e^{-} /ADU) was measured using the method explained below. The procedure takes two equal dark and two equal flat-field exposures all of the same exposure time calculating noise and gain independent from the light level. The conversion factor is calculated with the light level of the flat-fields and the variance values of the differences between the two flat-fields and the difference between the two dark exposures. This is then average over 50 dark and 50 flat-field exposures, i.e 25 measurements.

$$Mean = \frac{\sum_{i=1}^{n} pixelvalue_{i}}{n}$$
(1)

pixelvalue in ADU.

$$Variance = \frac{\sum_{i=1}^{n} (Mean - pixelvalue_i)^2}{n-1}$$
(2)

Standard Deviation =
$$\sigma = \sqrt{Variance}$$
 (3)

Conversion Factor =
$$K = \frac{number of e^{-}}{pixelvalue} \begin{bmatrix} e^{-} \\ ADU \end{bmatrix}$$
 (4)

$$K = \frac{Mean(signal)}{Variance(signal)}$$

$$K = \frac{\frac{Mean(FF1) + Mean(FF2)}{2} - \frac{Mean(DK1) + Mean(DK2)}{2}}{\frac{Variance(FF1 - FF2) - Variance(DK1 - DK2)}{2}}{2}$$

$$K = \frac{Mean(FF1) + Mean(FF2) - Mean(DK1) - Mean(DK2)}{Variance(FF1 - FF2) - Variance(DK1 - DK2)}$$
(5)

FF1, FF2, DK1 and DK2 are the equal flat-fields and dark exposures of the same duration.

As the final result of the Conversion Factor we take:

$$K_{r} \pm K_{err} = Mean(K_{i}) \pm \frac{\sigma(K_{i})}{\sqrt{n}}$$
(6)

The readoutnoise of the CCD is given by

$$Readoutnoise = R = K_r \cdot \sqrt{\frac{Variance(DK1 - DK2)}{2}}$$
(7)

With different measurements this gives:

$$R_{r} = Mean \left(R_{i} \right) \pm \frac{\sigma(R_{i})}{\sqrt{n}}$$
(8)

This noise computation method makes the following assumption : the pixel response is ergodic (spatially and in time), with no correlated noise between the pixels. If this assumption is true, then we have the same result by calculating the spatial noise of the difference of 2 dark image (spatial noise of (DK1-DK2)) and the temporal noise of each pixel (the temporal noises of all the pixels are averaged).

The "ergodic" hypothesis is not always true, this explains some differences between noise values measured by ESO and noise values measured by the NAOS consortium (temporal variance method on cubes of 50-100 consecutive images) for some readout modes. In addition, the measured noise by the NAOS consortium with the temporal variance method did not change between the CCD camera acceptance in Garching and the camera integration on the NAOS adapter.

For more details, see Ref. [12].

PLEASE NOTE:

Low noise results are only archived with proper grounding and well-connected cables. Noise is dependent on the cable length and capacitance of connections. Since you will receive a new set of cables after the delivery of the final system you will need to calibrate the noise again, especially when the system is mounted at its final location. The results should not differ much. The ODT will give advice on the grounding of the FIERA system at the adapter rotator if the noise will vary to the figure given below.

4.2.2 Noise results

The following 10 tables summarize the latest measurements done at the ESO CCD testbench in May 2000 for all modes. For the 50 kps modes we were able to archive noise level < 3 electrons/port and for the 280 kps modes we meet the goal of 4 electrons/port.

To be able to read the detector with 500 frames/second, we had to increase the pixel frequency to 715 kps per port. At this pixel frequency it was not possible to keep all channels under 6 electrons as foreseen for a 500-frames/sec mode. Nevertheless we were able to keep the noise between 6 and 7.2 electrons at high gain (see noise tables).

For each readout mode a sample of a corresponding image, as seen on the real time display, is shown on the right side of the noise tables.

The white and dark lines you can see on some of the images are related to the speed and binning factor of the mode. These are electronic settling effects and occur only on the first two prescan pixels of the serial register. Since these pixels are not used in the NAOS application, it is not an issue.

Readoutnoise is in units of electrons rms and the uncertainty in the noise measurement also given in electrons rms. The conversion factors are given in units of electrons/ADU.

MODE 1 – 280 kps – no binning – high gain

Readout port 0/P2:	readout port 0/P15:	
Convert factor= 0.347 ± 0.0056	Convert factor= 0.332 ± 0.0052	Example of image seen on the RT Display
RMS Noise=3.86 ±0.14	RMS Noise=3.78 ±0.14	
Readout port 0/P3: Convert factor= 0.336 ± 0.0048 RMS Noise= 3.83 ± 0.14 Readout port 0/P4: Convert factor= 0.343 ± 0.0053 RMS Noise= 3.92 ± 0.14 Readout port 0/P5:	readout port 0/P14: Convert factor= 0.339 ± 0.0054 RMS Noise= 3.80 ± 0.13 readout port 0/P13: Convert factor= 0.339 ± 0.0054 RMS Noise= 3.85 ± 0.14 readout port 0/P12:	
Convert factor= 0.362 ± 0.0058	Convert factor= 0.352 ± 0.0054	
KIVIS INOISE= 5.99 ± 0.14	KMIS NOISE= 5.75 ± 0.15	
Readout port 0/P6:	readout port 0/P11:	Note: Image not to scale
Convert factor= 0.356 ± 0.0057	Convert factor= 0.353 ± 0.0053	
RMS Noise=3.82 ±0.13	RMS Noise=3.77 ±0.13	8 2 2 2 2 8
Readout port 0/P7: Convert factor=0.360 ±0.0056 RMS Noise=3.89 ±0.13	readout port 0/P9: Convert factor=0.350 ±0.0052 RMS Noise=3.81 ±0.13	0/P 0/P 0/P 0/P 0/P
Readout port 0/P8: Convert factor=0.360 ±0.0054 RMS Noise=3.87 ±0.13	readout port 0/P8: Convert factor=0.357 ±0.0057 RMS Noise=3.89 ±0.13	O/P 02 O/P 03 O/P 04 O/P 05 O/P 06 O/P 06 O/P 08

MODE 2 – 635 kps – no binning – high gain

Readout port 0/P2:	readout port 0/P15:	Example of image seen on the RT Displa	y
Convert factor= 0.32 ± 0.0051	Convert factor= 0.32 ± 0.0049		
RMS Noise=5.36 ±0.19	RMS Noise=5.34 ±0.19		1
Readout port 0/P3:	readout port 0/P14:	the second states a second states of the second states and second states and second states and second states a	1
Convert factor= 0.320 ± 0.0051	Convert factor= 0.33 ± 0.0051		
RMS Noise= 5.84 ± 0.21	RMS Noise= 5.46 ± 0.19		l l
D 1	1	The second se	
Readout port 0/P4:	readout port 0/P13:		1
Convert factor= 0.32 ± 0.0050	Convert factor= 0.33 ± 0.0052		1
RMS Noise= 5.68 ± 0.20	RMS Noise= 5.51 ± 0.19		
Readout part 0/D5:	readout part 0/D12:		į –
Readout port $0/P3$.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
Convert factor -0.34 ± 0.0033	Convert factor -0.55 ± 0.0052		1
$\text{RWIS INVISE}=0.39 \pm 0.23$	KIVIS INDISE -3.70 ± 0.20	Note: Image not to scale	
Readout port 0/P6.	readout port 0/P11		
Convert factor= 0.33 ± 0.0048	Convert factor= 0.33 ± 0.0051	30 10 12 13 14 12 13 14 14 14 14 14 14 14 15 16 <th16< th=""> 16 16 16<!--</td--><td></td></th16<>	
RMS Noise=5 69 ± 0.21	RMS Noise=5 26 \pm 0 18		
Readout port 0/P7:	readout port 0/P9:		
Convert factor= 0.33 ± 0.0052	Convert factor=0.33 ±0.0053		
RMS Noise=6.13 ±0.26	RMS Noise=5.43 ±0.19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Readout port 0/P8:	readout port 0/P8:		
Convert factor= 0.34 ± 0.0052	Convert factor= 0.33 ± 0.0050		
RMS Noise=6.19 ±0.24	RMS Noise=5.56 ±0.19		

MODE 3 – 635 kps – no binning – low gain

Readout port 0/P2:	readout port 0/P15:	Exam	ple o	f im	age s	seen	on th	ne RT	Γ Dis	play
Convert factor= 2.025 ± 0.0357	Convert factor= 2.04 ± 0.033									
RMS Noise=5.84 ±0.32	RMS Noise=6.06 ±0.33							201		535
				614			123			
Readout port 0/P3:	readout port 0/P14:		102				182			
Convert factor= 1.988 ± 0.0317	Convert factor= 2.04 ± 0.032	25.0			8.1	53				
RMS Noise=6.55 ±0.34	RMS Noise=6.59 ±0.37						1.55			1.1
								12		
Readout port 0/P4:	readout port 0/P13:		100					1	100	Sec. 10
Convert factor= 2.024 ± 0.0348	Convert factor= 2.10 ± 0.034		36	2 3			18	設計	0.0	
RMS Noise= 6.59 ± 0.36	RMS Noise=7.10 ±0.42									
		16.6.6		建設		E 6	120			
Readout port 0/P5:	readout port 0/P12:		24			13.9			30	
Convert factor= 2.089 ± 0.0337	Convert factor= 2.06 ± 0.034									
RMS Noise=7.19 ± 0.47	RMS Noise=6.91 ±0.3944	134,325		8				24	5.0	
		Note:	Ima	to no	t to	scale				10.000
Readout port 0/P6:	readout port 0/P11:	note.	maş	ge ne	01 10	scale	-			
Convert factor= 2.073 ± 0.0315	Convert factor= 2.03 ± 0.036	l í								
RMS Noise=7.31 ± 0.42	RMS Noise= 5.70 ± 0.31		15	14	13	12	Ξ	10	6	
	1		/P	Ą	-P	P.	Ą	ď	P/P	
Readout port 0/P7:	readout port 0/P9:		0	0	•	•	•	•	0	
Convert factor= 2.157 ± 0.0391	Convert factor= 2.08 ± 0.034									
RMS Noise= 7.42 ± 0.58	RMS Noise= 6.27 ± 0.36									
	1 ((0/D0		03	03	2	60	90	6	80	
Keadout port 0/P8:	readout port 0/P8:		J/P	- H	P/P	P/P	P/P	e l	٩.	
Convert factor= 2.118 ± 0.0350	Convert factor= 2.09 ± 0.034		0	<u> </u>	0				0	
KIVIS INOISE= $/.90 \pm 0.65$	KIVIS INOISE= 6.01 ± 0.35									

MODE 4 – 280 kps – no binning – high gain – window 6x6

Readout port 0/P2:	readout port 0/P15:	Exam	ole o	f im	age s	seen	on th	ne RT	Γ Dis	splay
Convert factor= 0.34 ± 0.0056	Convert factor= 0.33 ± 0.0052	1			U					1 5
RMS Noise=3.87 ±0.136	RMS Noise=3.78 ±0.135			> 6			1.5			de la
		3. A		$\mathbf{F}_{\mathbf{r}}$		2 > 2	\mathbb{R}^{2}		c_{i,i_1}	
Readout port 0/P3:	readout port 0/P14:					(1, 1)	こう ひんし			
Convert factor= 0.33 ± 0.0048	Convert factor= 0.34 ± 0.0054	1000	383	51.			56		100	
RMS Noise=3.83 ±0.136	RMS Noise=3.80 ±0.135	1×1	199	<u>at</u> :	12	\mathbb{Z}_{2}	(2,2)			1.52
			133	られ.				8 a	12	
Readout port 0/P4:	readout port 0/P13:		14				1	R S		
Convert factor= 0.34 ± 0.0053	Convert factor= 0.34 ± 0.0054		1. A	周期			- 2		$\mathcal{F}_{\mathcal{F}}$	
RMS Noise=3.92 ±0.138	RMS Noise=3.84 ±0.136	$\mathbf{r} \in \mathcal{I}$		\mathbf{h}_{i}					6.10	
		18.98	25°		\mathbb{R}^{n}				24	≤ 12
Readout port 0/P5:	readout port 0/P12:	Note:	Imag	ge no	ot to	scale	;			
Convert factor= 0.36 ± 0.0058	Convert factor= 0.35 ± 0.0054									
RMS Noise=3.98 ±0.136	RMS Noise=3.73 ±0.130	[
			15	14	• 13	12	Ξ	=	60,	
Readout port 0/P6:	readout port 0/P11:		0/1	0	0/I	0	0	0	10	
Convert factor= 0.35 ± 0.0057	Convert factor= 0.35 ± 0.0053									
RMS Noise= 3.82 ± 0.132	RMS Noise= 3.77 ± 0.131									
	1 () () () () (2	\$	4	10	ý	7	~	
Readout port 0/P/:	readout port 0/P9:		P 02	- S	P 04	5 B	ŏ	0	P 00	
Convert factor= 0.36 ± 0.0056	Convert factor= 0.35 ± 0.0052		0/]	õ	0/]	õ	õ	ð	0	
RMS Noise= 3.89 ± 0.133	$RMS Noise=3.81 \pm 0.133$									
Readout part 0/D8:	randout part 0/D8:									
Convert factor 0.26 ± 0.0054	$C_{\text{envert factor}=0.26 \pm 0.0057$									
Convert factor= 0.30 ± 0.0054	Convert factor= 0.30 ± 0.0057									
KIVIS INDISC= $3.8 / \pm 0.133$	KIVIS INDISE= 3.89 ± 0.134									

MODE 5 – 50 kps – 2x2 binning – high gain

readout port 0/P2:	readout port 0/P15:	Exam	ole o	f ima	ige s	een (on th	e RT	Dis	play_
Convert factor= 0.32 ± 0.0097	Convert factor= 0.340 ± 0.010	1653	12		853	801	646	254	82	829
RMS Noise=2.71 ±0.15	RMS Noise=2.85 ±0.15		12	28	83	678	815	86	2.5	22.0
		1005			16.	12.	82	12	18	
readout port 0/P3:	readout port 0/P14:	1.5		88	89 P.	193	192	859	2.5	22
Convert factor= 0.333 ± 0.011	Convert factor= 0.349 ± 0.010	35.26	68	225	88	192	68	200	222	399.
RMS Noise=2.80 ±0.15	RMS Noise=2.90 ±0.15		266		12.	62	02			833
				- N.		20	4.2			150
readout port 0/P4:	readout port 0/P13:	6.556	20			1.0	100	663	203	
Convert factor= 0.337 ± 0.010	Convert factor= 0.339 ± 0.010	(1988) (1988)	135	81				- 2		E 84
RMS Noise=2.81 ±0.15	RMS Noise=2.76 ±0.14		660	103		280		85.		136
		2.13		81					Ε.,	1.24
readout port 0/P5:	readout port 0/P12:			58		100			523	
Convert factor= 0.355 ± 0.012	Convert factor= 0.341 ± 0.011	Note:	Imac	te no	t to s	scale				
RMS Noise=2.83 ±0.14	RMS Noise=2.77 ±0.15	1000.	mag			scure	·			
		[1	1		
readout port 0/P6:	readout port 0/P11:		15	4	13	12	=	10	60	
Convert factor= 0.351 ± 0.011	Convert factor= 0.332 ± 0.010		J/P	-P	P/P	- L	P.	P.	P/P	
RMS Noise= 2.84 ± 0.15	RMS Noise= 2.70 ± 0.14		0	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
readout port 0/P7:	readout port 0/P9:	-								
Convert factor= 0.356 ± 0.012	Convert factor= 0.344 ± 0.010		02	3	2	8	90	60	80	
RMS Noise= 2.87 ± 0.15	RMS Noise= 2.92 ± 0.17		J/P	- de la companya de l	٩(- L	- H	- di	P/P	
	1 () () ()		-		<u> </u>					
readout port 0/P8:	readout port 0/P8:									
Convert factor= 0.357 ± 0.012	Convert factor= 0.341 ± 0.012	2								
KMS Noise= 2.80 ± 0.14	KMS Noise= 2.72 ± 0.14									

MODE 6 – 280 kps – 2x2 binning – high gain

readout port 0/P2:	readout port 0/P15:	Evam	ale o	fim	ane s	een (on th	e R T	Die	nlav
Convert factor= 0.37 ± 0.012	Convert factor= 0.352 ± 0.011	LAIII		1 11116	ige s		on u			piay
$PMS Noise=2.02 \pm 0.20$	$PMS Noise=4.05 \pm 0.21$	12.00	1.00	12.0	100	1200	e 16	100	1000	1000
1000000000000000000000000000000000000	KIVIS NOISE-4.03 ±0.21	1.133	123		161	100	28	8	922	
readout port 0/P3.	readout port 0/P14:	1.53	. 8				88	12		
Convert factor 0.27 ± 0.012	Convert factor 0.272 ± 0.012	1.533	18			100	ほう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょ	S.		
Convert factor -0.37 ± 0.013	Convert factor -0.372 ± 0.012	188	181		103		88		100	100
RIVIS NOISE-3.98 ± 0.20	KIVIS NOISE-4.11 ± 0.21	183			80		28			
ne a land ne at 0/D4	man land mant 0/D12	1 133	15	80 B		102	58	88	386	
readout port $0/P4$:	readout port $0/P13$:		16		÷.		56		888	
Convert lactor= 0.37 ± 0.010	Convert factor= 0.303 ± 0.011	1.65	18	8 H	88	103	8 B	88.	500	
RMS Noise= 3.98 ± 0.20	$RMS Noise=4.12 \pm 0.21$	1.55	10		89-		88	815	2.8	
ne a land mart 0/D5	man land mant 0/D12	1.52	1.5	5 I.	64	122	8.8		535	
readout port 0/PS:	readout port 0/P12:	1 33					88	81	506	
Convert factor= 0.38 ± 0.011	Convert factor= $0.3/5 \pm 0.011$	Note:	Imag	ze no	t to s	scale	;			
RMS Noise= 3.93 ± 0.20	RMS Noise= 4.00 ± 0.20									
and here the set O/DC	man land mant 0/D11	[
readout port 0/P6:	readout port 0/P11:		15	14	13	12	Ξ	10	60	
Convert factor= 0.38 ± 0.013	Convert factor= $0.3/2 \pm 0.011$		d/C		T/C	- dic		T/C	T/C	
RMS Noise= 3.95 ± 0.20	RMS Noise= 3.95 ± 0.20		•		•		•		•	
1 ()(D7	1 ()(0/D0									
readout port 0/P/:	readout port 0/P9:									
Convert factor= 0.39 ± 0.012	Convert factor= $0.3/9 \pm 0.013$		02	03	6	02	90	01	08	
RMS Noise= 4.04 ± 0.20	RMS Noise= 4.10 ± 0.20		J/P	-d-C	P/P	-d-C	-d-C	- Hereit	PP	
						Ŭ				
readout port 0/P8:	readout port 0/P8:									
Convert factor= 0.38 ± 0.011	Convert factor= 0.379 ± 0.012									
RMS Noise= 3.93 ± 0.20	RMS Noise= 4.12 ± 0.21									

MODE 7-50 kps-2x2 binning-high gain-window 6x6

readout port 0/P2:	readout port 0/P15:	Exam	ple o	f im	age s	seen	on th	e R7	[Dis	splay
Convert factor= 0.32 ± 0.009	Convert factor= 0.34 ± 0.010		_		_				_	
RMS Noise= 2.71 ± 0.15	RMS Noise=2.85 ±0.15	1000		-10			125		25	100
				122	125		12			
readout port 0/P3:	readout port 0/P14:								2.2	
Convert factor= 0.33 ± 0.011	Convert factor= 0.34 ± 0.010			- 55			18	12.3	1.1	
RMS Noise=2.80 ±0.15	RMS Noise=2.90 ±0.15		19	199				-8		
					83			12		
readout port 0/P4:	readout port 0/P13:								20	
Convert factor=0.33 ±0.010	Convert factor= 0.33 ± 0.010						88	20		
RMS Noise=2.81 ±0.15	RMS Noise=2.76 ±0.14							81	6.4	
readout port 0/P5:	readout port 0/P12:	Note	Ima	te no	ot to	coale				
Convert factor= 0.35 ± 0.012	Convert factor= 0.34 ± 0.011	Note.	maş	ge ne	<i>n</i> 10	scare	/			
RMS Noise=2.83 ±0.15	RMS Noise=2.77 ±0.15									
			15	4	13	12	=	2	60	
readout port 0/P6:	readout port 0/P11:		/b	/F	/Β	ď	4	4	/P (
Convert factor= 0.35 ± 0.0116	Convert factor= 0.332 ± 0.0105		0	0	0	0	0	0	0	
RMS Noise= 2.84 ± 0.15	RMS Noise= 2.70 ± 0.14									
readout port 0/P7·	readout port 0/P9.		5	3	4	Q	و	5	8	
Convert factor= 0.36 ± 0.0124	Convert factor= 0.344 ± 0.0103		P 0	P 0	P 0	P 0	PO	P 0	P 0	
RMS Noise= 2.87 ± 0.15	$RMS Noise=2.92 \pm 0.17$		Õ	Õ	Õ	Õ	Õ	Õ	Õ	
10100 2.07 -0.10										
readout port 0/P8:	readout port 0/P8.									
Convert factor= 0.36 ± 0.0120	Convert factor= 0.341 ± 0.0120									
RMS Noise= 2.80 ± 0.14	RMS Noise= 272 ± 0.14									
100150 2.00 ±0.14	10005 2.72 ±0.14									

MODE 8 - 50 kps - 4x4 binning - high gain -

readout port 0/P2:	readout port 0/P15:	Exam	ple o	f im	age s	seen o	on th	ne R7	۲ Dis	play
Convert factor= 0.33 ± 0.014	Convert factor= 0.33 ± 0.011						_			
RMS Noise=2.93 ±0.21	RMS Noise=2.95 ±0.21		1.5	87		- 55	83	е.	22	- 10
		1.55	18	а.		- 10	13	ж.	20	
readout port 0/P3:	readout port 0/P14:		18	ю.			11	88	10	
Convert factor= 0.31 ± 0.012	Convert factor= 0.33 ± 0.012		12			- 15	11	8		
RMS Noise=2.81 ±0.21	RMS Noise=2.87 ±0.21		1.0	1.			H		68	100
		1.88	18	а.			6.6		22	- 19 C
readout port 0/P4:	readout port 0/P13:	1.00	18	11	100	120	14			120
Convert factor= 0.33 ± 0.013	Convert factor= 0.35 ± 0.016	1.60	18			- 22	64	я.	200	100
RMS Noise=2.92 ±0.21	RMS Noise=3.09 ±0.22		12	8		122	64	æ		
			1.1	÷.,		- 62	1.2	12		
readout port 0/P5:	readout port 0/P12:	Note:	Imag	ge no	ot to	scale	;			
Convert factor= 0.35 ± 0.014	Convert factor= 0.32 ± 0.013									
RMS Noise=2.99 ±0.21	RMS Noise=2.79 ±0.20		10	+	3	~	_			
			P 1.	Ĺ	P 1.	E	E	E	D O	
readout port 0/P6:	readout port 0/P11:		0	õ	0/]	õ	õ	ð	õ	
Convert factor= 0.35 ± 0.016	Convert factor= 0.33 ± 0.014									
RMS Noise=3.08 ±0.22	RMS Noise=2.91 ±0.21									
			~	~	+	6	<u></u>	~	~	
readout port 0/P7:	readout port 0/P9:		D 0	0.	P 0	Ö	Õ	D O	5 O	
Convert factor= 0.34 ± 0.014	Convert factor= 0.34 ± 0.013		0	õ	0/]	õ	õ	ð	õ	
RMS Noise=3.04 ±0.22	RMS Noise=3.06 ±0.25									
readout port 0/P8:	readout port 0/P8:									
Convert factor= 0.35 ± 0.014	Convert factor=0.33 ±0.013									
RMS Noise=3.01 ±0.21	RMS Noise=2.86 ±0.21									

MODE 9 – 715 kps – no binning – high gain

1 () (D2	1 ()(D15	
readout port 0/P2:	readout port 0/P15:	Example of image seen on the RT Display
Convert factor= 0.33 ± 0.0053	Convert factor= 0.33 ± 0.0051	
RMS Noise= 5.79 ± 0.20	RMS Noise= 5.9 ± 0.21	
readout port 0/P3:	readout port 0/P14:	
Convert factor= 0.33 ± 0.0053	Convert factor= 0.33 ± 0.0047	and the second
RMS Noise=6.88 ±0.24	RMS Noise=6.06 ±0.21	
readout port 0/P4:	readout port 0/P13:	
Convert factor= 0.33 ± 0.0049	Convert factor= 0.34 ± 0.0051	
RMS Noise= 6.20 ± 0.22	RMS Noise= 6.18 ± 0.21	
readout port 0/P5.	readout port 0/P12.	
Convert factor= 0.34 ± 0.0053	Convert factor= 0.34 ± 0.0053	
$PMS Noise=6.81 \pm 0.27$	$PMS Noise=6.02 \pm 0.24$	
10.27	KWIS NOISC-0.92 ±0.24	Note: Image not to scale
readout nort 0/D6:	readout port 0/D11:	
$C_{\text{encourt}} = 0.25 \pm 0.0055$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
Convert factor= 0.35 ± 0.0055	Convert factor= 0.34 ± 0.0048	09 10 11 12 13 14
RMS Noise= 6.36 ± 0.22	RMS Noise= 5.78 ± 0.20	
	1	
readout port 0/P7:	readout port 0/P9:	
Convert factor= 0.35 ± 0.0057	Convert factor= 0.33 ± 0.0049	
RMS Noise=6.70 ±0.30	RMS Noise=6.06 ±0.21	08 07 05 04 03 03 03 03 03 03 03 03 03 03 03 03 03
readout port 0/P8:	readout port 0/P8:	
Convert factor= 0.34 ± 0.0052	Convert factor= 0.34 ± 0.0055	
RMS Noise=7.19 ±0.26	RMS Noise=6.10 ±0.21	
	1	1

MODE 10 – 715 kps – no binning – low gain

readout port 0/P2:	readout port 0/P15:	Examp	ple of	f ima	age s	een o	on th	e R7	۲ Dis	play
Convert factor= 2.26 ± 0.044	Convert factor= 2.265 ± 0.044			_						_
RMS Noise=6.61 ±0.30	RMS Noise=7.13 ±0.33									
		19252	1.11	127		83			E Kous	8
readout port 0/P3:	readout port 0/P14:	100.6	12.2			14	29		1237	
Convert factor= 2.21 ± 0.043	Convert factor= 2.327 ± 0.044						123	140		
RMS Noise=8.27 ±0.37	RMS Noise=8.06 ±0.44				1			2.73	103	5
		Real Property			130				1.5	
readout port 0/P4:	readout port 0/P13:	1.200		1983			18:33	120	120	1
Convert factor= 2.220 ± 0.041	Convert factor= 2.223 ± 0.039	12.13		1	20					
RMS Noise=8.24 ±0.37	RMS Noise=8.18 ±0.39							該急		
		1000		100	26					
readout port 0/P5:	readout port 0/P12:	1.22	2.4	家						
Convert factor= 2.352 ± 0.047	Convert factor= 2.287 ± 0.043	12.65	1.48					1.50		
RMS Noise=7.77 ±0.58	RMS Noise=8.28 ±0.44	Note:	Imao	ie no	t to	scale		10.04	80 O.S.S.	3.0
		1000	mag	,e no		scare	,			
readout port 0/P6:	readout port 0/P11:	l r								
Convert factor= 2.309 ± 0.044	Convert factor= 2.257 ± 0.0433		15	4	13	12	=	10	60	
RMS Noise=8.49 ±0.45	RMS Noise=6.72 ±0.29		P/P	P.	P/P	P.	-	-	P/P	
			0	<u> </u>	0	<u> </u>	0	0	0	
readout port 0/P7:	readout port 0/P9:									
Convert factor= 2.287 ± 0.046	Convert factor= 2.238 ± 0.043	-								
RMS Noise=8.66 ±0.50	RMS Noise=7.27 ±0.33		02	03	2	65	90	10	80	
						P.P.				
readout port 0/P8:	readout port 0/P8:					0				
Convert factor= 2.308 ± 0.044	Convert factor= 2.257 ± 0.041	41								
RMS Noise=7.49 ±0.84	RMS Noise=7.01 ±0.32	j l								

4.2.3 Quantum efficiency (QE)

The specifications are given in the table 5 of reference [4] p.17/42.

We did not measure the QE of the final CCD. Nevertheless we provide you with and average curve of a QE measurements done on 12 EEV CCD-44-82 which have the same anti refecting coating and manufacturing process as the CCD-50 used for NAOS. We assume that the QE will not vary more than 5 % to the actual QE of the NAOS chip.

Figure 2 - Expected quantum efficiency of the CCD-50 for the final NAOS system

4.2.4 Dark current

To make the dark current contribution negligible, we recommend that the CCD must be cooled down to -100 °C.

Bin- factor		1 :	x 1			2 2	x 2			4 2	x 4	
						Frame 7	Time / m	S				
Temp/ °C	2	5	20	50	2	5	20	50	2	5	20	50
-30	0.26	0.65	2.6	6.4	1.0	2.6	10.3	25.9	4.1	10.3	41.4	103.7
-40		0.22	0.86	2.1	0.35	0.86	3.4	8.6	1.3	3.4	13.8	34.5
-50			0.23	0.5		0.23	0.92	2.3	0.37	0.92	3.7	9.2
-60	neglig	ible (<	0.1 e ⁻)	0.15			0.23	0.5		0.23	0.92	2.3
-70											0.14	0.35

Table 3 - Noise contribution in electrons from dark current

Table 3 shows the number of electrons resulting from dark current at different readout rates, binning factors, and frame times. We assume a dark current of 1 nA/cm^2 at 20 degree C for the CCD. For a CCD with 3 electrons readout noise, a dark current contribution of 10 %, i.e. 0.3 electrons, can be considered negligible. Using a continuous flow cryostat the performance of the CCD would not be compromised by dark current even for the worst case operating mode. The black line in table3 illustrates the border line for negligible dark current for these CCDs. A CFC cooled with liquid nitrogen will provide us with the possibility to cool down to -110 degree C.

4.2.5 Linearity and full well capacity

Full well capacity

To avoid crosstalk and the effect of undershoot the full well of a single pixel should not be more than ~90.000 electrons.

Linearity

Linearity of the system is dependent on the readout speed of the CCD. We measured the linearity of the fastest readout speed (715 kps and low gain). For slower modes the linearity will be equal or better than the stated value. The measurements were done with a convesion factor of 2 electrons/ADU.

The non linearity (Peak to peak) at 715 kps is: 0.8322 % / -0.7743 %, (Mean dev.): -0.002073 % / rms dev 0.4553 %

The following plot shows the residual non linearity curve. (Note that 1 ADU equals to 3.9 electrons for this plot)

Figure 3 - Non-linearity plot for 715 kps (mode 10, low gain)

4.2.6 Undershoot problem, cross-talk and charge transfer efficiency

The undershoot problem

We enhanced the electronic response of the undershoot effect for the pixel after a bright pixel. We worked on the filter settings and made some improvement. Nevertheless since we have to discharge more, this improvement is trade-off between the "dark pixel " problem and the readout noise for the high-speed modes.

To avoid undershoot problems we recommend not put more than 90.000 electrons on the detector for the 635 kps and 715 kps modes.

Following we will give 2 examples of the response for the 635 kps modes and high and low gain.

The following image was taken at 635 kps with high gain (0.3 electrons/ADU). We did not measure any undershoot. The spot is almost saturated at this gain setting (19.500 electrons).

Figure 4- Image at 635 kps at high gain (highest pixel value 19.500 electrons) - No undershoot is visible.

Figure 6 - "Blowup" of the cross-section of the image at 635 kps at high gain (highest pixel value 19.500 electrons) - No undershoot is visible. Horizontal axis : pixel number, vertical axis: pixel response (adu).

The following image was taken at 635 kps with low gain (2 electrons/ADU). We did not measure any undershoot. The brightest pixel in the spot has 53.000 ADU this gain setting (highest pixel value at 106.000 electrons)

Figure 7 - Image at 635 kps at low gain (highest pixel value 106.000 electrons) - No undershoot is visible.

Figure 9 - "Blowup" of the cross-section of the image at 635 kps at low gain (highest pixel value 106.000 electrons) - No undershoot is visible. Horizontal axis : pixel number, vertical axis: pixel response (adu).

<u>Cross-talk</u>

We did not detected any cross-talk between the channels under a levels of 90.000 electrons per pixel. Nevertheless for a highly saturated pixel, over 120.000 electrons, crosstalk is visible. To avoid cross-talk we recommend to keep the light level always under 90.0000 electrons per pixel or less.

Figure 10 - Highly oversaturated image at low gain, crosstalk is visible.

Figure 11 - Image at low gain with 100.000 electrons, crosstalk within the noise.

Charge transfer efficiency

- The CTE for parallel transfer will be not less than 0.99999 (EEV measurement)
- The CTE for serial transfer will be not less than 0.99999 (EEV measurement)

4.2.7 Cosmetic quality of the NAOS CCD

The CCD used for the final system is, except for a single trap seen in output port 0P/7, defect free. This trap is only visible in a flat field image and is slightly less light sensitive by 3 % compared to the other pixels.

Figure 12 - Cosmetic quality of the detector

4.2.8 Electronic offset

All offsets are adjusted between 200 and 400 ADU for all channels. Nevertheless the offset level will depend on the grounding applied. We expect a maximum variation of around 50 ADUs. There is not need to readjust the offset levels once the system is mounted at the final structure.

4.2.9 Contamination risks and how to keep the system clean

The final detector system was undergoing a thorough cleaning procedure at the ESO ODT lab. During the final test phase we did not detect any contamination on the CCD.

The cryostat should be always under vacuum if not used and the CCD should be the warmest point in the dewar during warming up phases. If possible the CCD should be heated to 25 C during the warming up phase with the PULPO temperature controller.

If you start integrating the lenslets and other mechanics inside the cryostat the procedures described in the ODT webpages : <u>http://www.eso.org/projects/odt/contamination/clean.html</u> must be followed to ensure a clean system. The pages give detailed information on:

- Good and Bad Materials
- Needed Equipment and Precautions
- Handling Procedures and Working Conditions
- Treatment of Components Washing and Baking
- List of Contaminants

5. Cryogenics

5.1 Cooling and temperature parameters

CFC cold plate temperature:	-150 °C
CCD carrier temperature:	-120 °C
CCD operating temperature is:	-100 °C
(Sensor one and two)	
Electronic box shut down temp:	+ 40 °C

The temperature mentioned here are temperature issued from the cryostat design. Real cold plate and CCD operating temperatures have been measured in Bellevue and are reported in Ref. [12].

5.2 Flexure test

There will be a detailed report from Grenoble (see Ref. [12]) on the results of the flexure tests performed on the 9^{th} and 10^{th} of May 2000 at ESO.

5.3 Lenslet holder integration

The lenslet holder will be integrated in the final camera in Grenoble. The lenslet holder will be cleaned at Grenoble using the recommended ESO cleaning procedures.

The lenslet holder integration and characteristics are fully described in Ref. [12].

6. Electrical interfaces

6.1 Cryostat temperature controller

The interface between the cryostat temperature controller and NAOS is a RS485 link connected with the cable named "VIS-HSK-CRYO" [7]. The interface is fully described in this document.

6.2 FIERA/RTC cable interface

The electrical interface is fully described in the ref. [4].

7. Deliverable

The items preceded by a * are already provided to LAOG with the previous system.

7.1 Cryogenic system

7.1.1 Cryostat

• One continuous flow cryostat. The pumping interface is a Pneurop DN40 flange terminated with a manual valve (in the ref. [4], an electrovalve was connected the cryostat flange, this one will be now placed near the vacuum pump).

- Specific cryostat temperature controller including PULPO (the standard ESO temperature controller can be provided first when delivering the system at LAOG). The 12 V power supply will be provided by the NAOS consortium
- Full range vacuum Gauge Balzers connected to the cryostat.

7.1.2 LN2 pipes

• LN2 pipes from tank to the Visible and the IR Cryostats including the rotating feed-through and connectors including valves .

7.1.3 Pumping system

- *One vacuum pump Alcatel Drytel Micro terminated DN40
- *One DN40KF vacuum electrovalves

7.2 Detector

7.2.1 Detector electronics

- FIERA Detector Head Electronics (DFE)
- FIERA preamps
- FIERA SPARC LCU
- FIERA DC Power Supply
- All electrical cables defined in the ref. [4],including the link Spark LCU/ RTC, excepted the cable "VIS-HSK-Omega" provided by the NAOS consortium

7.2.2 CCD cryostat head with the EEV chip

7.2.3 Cables

Cables will be provided 2 times. One set for the prototype camera integrated on the adapter, the other set for the final camera. Fiber links (VIS-DFE-DAT and VIS-HSK-PULPO): For each link, 2 fibers will be provided, the longest one goes through the cable twist, the smallest one goes from the rack (PULPO or FIERA DFE) to a connecting box fixed on the adapter. The cable VIS-PWR-Omega is provided by NAOS.

- PULPO Cryostat VIS-CR-PULPO, 6.1 m
- FIERA DFE Fiera PT100, 3.7 m
- Vac Gauge VIS-CR-VAC, 6.1 m
- RS232 Sparc (fiber) VIS-HSK-PULPO, 20 m + 1.4 m
- FIERA DC (power) VIS-PWR-Pulpo, 3.2 m
- Temp control Cryostat VIS-CR-OMEGA, 6.1 m
- Nitrogen valve VIS-CR-N2V, 6.1 m
- 12 V PS VIS-PWR-Omega provided NAOS
- FIERA DFE cryostat clocks VIS-DET-clocks, 1.6 m
- FIERA DFE cryostat bias VIS-DET-bias, 1.7 m
- FIERA DFE video preamp VIS-DET-video, 1.7 m
- FIERA DFE preamp control VIS-PA-ctrl, 1.7 m
- Preamp 1 cryostat video 1 Not named ,20 cm

- Preamp 2 cryostat video 2 Not named, 20 cm
- SPARC SPARC cable twist VIS-DFE-DAT, 20 m + 3.4 m

7.3 Documentation

- 7.3.1 FIERA User's Manual
- 7.3.2 FIERA Maintenance Manual
- 7.3.3 Cryostat Operating and User's Manual

9. Spares

A full CCD detector system will be delivered as a spare (date to be defined with the ESO ODT). Therefore the first CCD system will be reused and upgraded.

9. NAOS specific cable documentation

All cables used for the NAOS system are standard FIERA system cables. Cables specific to the NAOS system are documented below:

- 1. CCD clockcable
- 2. CCD video cable
- 3. CCD bias cable.
- 4. CCD cryostat PCB : video connector and bias connectors
- 5. CCD cryostat PCB : CCD Ziff socket
- 6. CCD cryostat PCB : Channel 8 and 9 loads

10. Pictures

Fiera Detector Front unit Boxes attached to NAOS

Detector head attached to NAOS

FIERA system with NAOS

CRYOSTAT SIDE

sneet

9

10.4 \leq

Thursday, December 24, 1998	Rolf Gerdes		NAOS CON EEVEN
Scale	B≊		
	CAGE Code		EUROH
Sheet of 1	ESO-INS-ODT-CRYBIASCABLE V0	INTERFACE CR YOSTAT / BIAS BOARD	PEAN SOUTHERN OBSERVATORY

